The AFD sensory neurons encode multiple functions underlying thermotactic behavior in Caenorhabditis elegans.
نویسندگان
چکیده
The thermotactic behaviors of Caenorhabditis elegans indicate that its thermosensory system exhibits exquisite temperature sensitivity, long-term plasticity, and the ability to transform thermosensory input into different patterns of motor output. Here, we study the physiological role of the AFD thermosensory neurons by quantifying intracellular calcium dynamics in response to defined temperature stimuli. We demonstrate that short-term adaptation allows AFD to sense temperature changes as small as 0.05 degrees C over temperature ranges as wide as 10 degrees C. We show that a bidirectional thermosensory response (increasing temperature raises and decreasing temperature lowers the level of intracellular calcium in AFD) allows the AFD neurons to phase-lock their calcium dynamics to oscillatory thermosensory inputs. By analyzing the thermosensory response of AFD dendrites severed from their cell bodies by femtosecond laser ablation, we show that long-term plasticity is encoded as shifts in the operating range of a putative thermoreceptor(s) in the AFD sensory endings. Finally, we demonstrate that AFD activity is directly coupled to stimulation of its postsynaptic partner AIY. These observations indicate that many functions underlying thermotactic behavior are properties of one sensory neuronal type. Encoding multiple functions in individual sensory neurons may enable C. elegans to perform complex behaviors with simple neuronal circuits.
منابع مشابه
An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior.
Caenorhabditis elegans navigates thermal gradients by using a behavioral strategy that is regulated by a memory of its cultivation temperature (T(c)). At temperatures above or around the T(c), animals respond to temperature changes by modulating the rate of stochastic reorientation events. The bilateral AFD neurons have been implicated as thermosensory neurons, but additional thermosensory neur...
متن کاملSynaptic activity of the AFD neuron in Caenorhabditis elegans correlates with thermotactic memory.
Thermotactic behavior in Caenorhabditis elegans is sensitive to both a worm's ambient temperature (T(amb)) and its memory of the temperature of its cultivation (T(cult)). The AFD neuron is part of a neural circuit that underlies thermotactic behavior. By monitoring the fluorescence of pH-sensitive green fluorescent protein localized to synaptic vesicles, we measured the rate of the synaptic rel...
متن کاملIntegration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory.
Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sen...
متن کاملSpecification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx
Temperature is a critical modulator of animal metabolism and behavior, yet the mechanisms underlying the development and function of thermosensory neurons are poorly understood. C. elegans senses temperature using the AFD thermosensory neurons. Mutations in the gene ttx-1 affect AFD neuron function. Here, we show that ttx-1 regulates all differentiated characteristics of the AFD neurons. ttx-1 ...
متن کاملCorrection: Phthalates Induce Neurotoxicity Affecting Locomotor and Thermotactic Behaviors and AFD Neurons through Oxidative Stress in Caenorhabditis elegans
BACKGROUND Phthalate esters are ubiquitous environmental contaminants and numerous organisms are thus exposed to various levels of phthalates in their natural habitat. Considering the critical, but limited, research on human neurobehavioral outcomes in association with phthalates exposure, we used the nematode Caenorhabditis elegans as an in vivo model to evaluate phthalates-induced neurotoxici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 28 شماره
صفحات -
تاریخ انتشار 2006